Coordinated drought planning is essential for new Ethiopian Dam, research suggests

MANCHESTER, UK (The University of Manchester) – Near-term concerns about the impact of The Grand Ethiopian Renaissance Dam (GERD) on water availability for Egypt and Sudan are unlikely to materialize, but drought preparedness will require careful coordination, suggests research published today by researchers from the The University of Manchester, University of Oxford, University of North Carolina at Chapel Hill, University of Colorado Boulder, and Duke University.

GERD, currently under construction, has strained relations between Nile countries. Negotiations on how to fill and operate the dam ended in deadlock again last month, partially over the perceived implications for water shortages in Sudan and Egypt. This has been compounded by a lack of reservoir simulation models considered sufficiently credible by all negotiators and decision-makers.

This new research uses historical data from Nile measurements over extended wet, average and dry periods to understand the risks of filling and operating the dam, and the potential impacts of a long-term drought. It shows that during filling the GERD the High Aswan Dam’s (HAD) reservoir will fall, but the risk of additional water shortage in Egypt is low. Once in operation, the GERD will benefit Ethiopia and Sudan without significantly affecting water users in Egypt as long as Nile flows are similar to the historical average.

However, researchers deem a future multi-year drought “inevitable” although the probability, severity, and timing are unknowable, especially as climate change unfolds. They warn that advanced planning for and careful coordinated management are essential if harmful impacts are to be minimized.

Professor Dale Whittington of, The University of Manchester and University and North Carolina at Chapel Hill said: “In this paper we used narratives to make the results of complex computer simulations accessible not just to water professionals, but to a wider audience—government officials, international donors, and civil society in Egypt, Sudan, and Ethiopia. We describe what happens after the construction of the GERD in terms of three ‘eras’: during the filling of the GERD; after the GERD is filled and Nile flows are ‘normal’; and during a severe, multi-year drought.”

Continue reading this story at The University of Manchester